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Introduction

Breast cancer is the second most common form of malignancy among women the
second leading cause of fatality among women who have cancer. And yet, the underlying
mechanisms that lead to the formation of mammary tumors remain unclear. Broadly,
cancer can be defined as uncontrolled cell division that leads to starvation of normal cells
and malfunction of normal physiological processes. Rapid cell division does occur during
normal embryonic development and during tissue repair; however, these cell divisions are
strictly controlled. Thus, understanding the molecular control mechanism of cell division
and morphogenesis in normal development holds the key to unlock the mystery of cancer.

It's well established that ductal outgrowth in the mammary gland is controlled by
ovarian hormones, especially, estrogen and progestrone. Results from studies of estrogen
receptor null mutants and progestrone receptor null mutants have shown that ductal
outgrowth is depended on stroma expressing estrogen receptor as well as progesterone
receptor although branching requires progesterone receptors expressed by the epithelium.
Experiments such as these firmly established the importance of epithelial-stromal
interactions in regulating developmental events in the mammary gland. However, the
molecular mechanisms by which these processes function are still poorly understood.
And yet a clear understanding of the fundamental molecular mechanism that regulates the
normal developmental processes holds the key to the creation of innovative methods for
early diagnosis and treatment of breast cancer.

One group of molecules that have been shown to have critical function in the
development of epidermal appendages including mammary gland are the Msx
homeodomain-containing proteins, the Msx/ and Msx2. The Msx gene family is named
for the Drosophila muscle segment homeobox (msh) gene, which is expressed in specific
mesodermal and neuronal cell populations during embryogenesis (Walldorf ef al., 1989,
D'Alessio and Frasch, 1996; Isshiki et al, 1997). Loss-of-function mutation of msh led to
alterations of neuroblast cell fate, such that the dorsal cells took on ventral neuronal cell
fates (Isshiki ef al.,, 1997). Targeted overexpression of the msh gene resulted in severe
disruption of the proper development of the midline and ventral neuroblasts (Isshiki ez
al., 1997). Genetic analyses of two other msh-related genes, tinman and bagpipe, have
shown that both genes are required for the determination of cell fates in subpopulations of
the dorsal mesoderm in Drosophila embryos (Bodmer, 1993; Azpiazu and Frasch, 1993).

Homology screening approaches have been used to isolate msh-related, or Msx
genes, from a variety of non-vertebrate and vertebrate organisms, including Hydra
(phylum Coelenterata) (Davidson, 1995), sea urchin (phylum Echinodermata) (Dobias et
al., 1997), ascidian (phylum Urochordata) (Holland, 1991; Ma et al., 1996) Amphioxus
(phylum Chordata) (Holland et al., 1994), and representatives of all vertebrates classes
(Holland, 1991; Bell, ez al., 1993; Davidson ef al., 1995). Mammals are known to
possess three Msx genes, designated Msx1, 2 and 3 (Davidson, 1995). General features of
the Msx genes are (i) a non-clustered organization; (ii) a distinct homeodomain sequence,
substantially different from sequences of the clustered Hox genes; (iii) a striking
conservation of homeodomain amino acid sequences across wide phylogenetic distances:
only one amino acid, for example, distinguishes the 70 amino acid homeodomain regions




of the sea urchin SpMsx gene and the mouse Msx2 gene--in spite of more than 600
million years of separate evolution (Bell et al., 1993).

Such a widespread phylogenetic distribution and such extreme conservation of
amino acid sequence suggest that the msh gene family performs fundamental and
conserved tasks throughout the metazoa. Consistent with the view is the striking
similarity in the patterns of expression of Msx genes in early embryos of highly divergent
organisms. For example, in Xenopus, Msx transcripts are found in dorsal mesoderm after
its involution over the dorsal lip, and subsequently in the overlying neural ectoderm,
including the cranial neural crest (Su et al., 1991). Strikingly, elements of this pattern are
recognizable even in mammalian embryos. We and others have identified Msx/ and
Msx2 transcripts in the limb mesenchyme and in the overlying apical ectodermal ridge, in
the tooth bud, in hair follicles, and in cranial neural crest and its derivatives (Davidson ef
al., 1991; Coelho et al., 1991a, b; Robert et al., 1991; MacKenzie et al., 1992; Satokata
and Maas, 1994; Chen et al., 1996; Davidson, 1995). A common feature of these sites is
that they are tissues actively engaged in inductive interactions. In the skull, Msx/ and
Msx2 transcripts are localized in the ectomesenchyme of the developing skull and sutures
(Mackenzie et al., 1991a, b; Liu et al., 1999) where interactions between the suture and
the underlying dura determine the growth of the flat bones of the skull (Opperman et al,
1993; Opperman et al.1995). These genes act as general regulators of proliferation/
differentiation and active participants of apoptosis (Graham et al., 1994; Odelberg et al.,
2001; Holme et al., 2000).

Msx2 gain of function phenotypes in humans suggest that Msx2 gene is an essential
player in calvarial morphogenesis. Jabs et al (1993) demonstrated that the human Msx2
gene is mutated in individuals affected with Boston type craniosynostosis, an autosomal
dominant disorder of cranial patterning characterized by the premature fusion of calvarial
bones and consequent abnormal skull shape. We have introduced the Boston mutation--a
Pro-148->His substitution in the N-terminal arm (position 7) of the homeodomain--into
the mouse Msx2 gene. We have shown that transgenic mice bearing this mutant gene
under the control of the Msx2 promoter or a heterologous promoter (CMV or TIMP-1)
exhibit premature fusion of calvarial bones, and thus recreate the major feature of the
human defect (Liu ez al., 1995). We demonstrated further that overexpression of the wild
type Msx2 gene elicits a similar phenotype--a result that suggests that the Pro 148-> His
mutation acts by a dominant positive mechanism (Liu et al., 1999).

Early in development, Msx2 transcripts were detected in the invaginating
mammary ectoderm among other sites (Philippard et al., 1996; Friedmann and Daniel,
1996). Shortly after ectodermal invagination, it's expression is localized to the
mesenchyme surrounding the ectodermal bud. In postnatal mammary gland, Msx2
expression is detected in ductal mesenchyme and declines sharpely early in pregnancy
and then reinduced during the involution phase. Intriguingly, Msx2 expression can be
modulated by estrogen and is myoepithelial dependent (Friedmann and Daniel, 1996). In
the Msx2 null mutants, both ductal elongation and branching is severely affected in
prepubertal mammary glands and in 30% of Msx2 knockout animals, mammary gland
arrested at the bud stage (1) which is a phenocopy of PTH/PTH1P receptor knockout
(Wysolmerski te al., 1998). And interestingly, in the Msx2 knockout animals, the
expression of PTH/PTHrP receptor is reduced in long bones and trabecular bone volume
is reduced, a similar defect observed in PTH/PTHrP heterozygous knockout animals.




These intriguing observations prompt me to formulate following hypotheses: that
modulation of Msx2 expression by estrogen is a direct regulation of gene expression
through estrogen receptor binding to the Msx2 promoter; and that Msx2 regulates ductal
branching by modulating PTH/PTHrP receptor expression in the ductual mesenchyme.
Our specific aims are: (1) to investigate the molecular mechanism of estrogen/estrogen
receptor regulation of Msx2 transcription; (2) to examine the molecular interactions
between the Msx2 gene and PTH/PTHIP signaling pathway in regulating ductual
branching.

Results

To test the first hypothesis, in collaboration with Dr. Kenneth Korach at NIH we
have performed northern blot hybridization of RNAs obtained from the estrogen receptor
knockout animals using Msx2 cDNA probe. The blot showed that Msx2 expression was
reduced by less than two folds in the estrogen receptor knockout animals although Msx2
transcripts were expressed in detectable levels. This result showed that the expression
of Msx2 does not require functional estrogen receptor. The mammary gland phenotype in
the ER null animals may not entirely due to reduction in Msx2 gene expression,
suggesting that a complex genetic interaction appears to dictate early stages of mammary
gland development and may require additional genetic components.

In our preliminary studies prior to the submission of this grant proposal, we have
shown that a 400bp fragment of the Msx2 promoter targets reporter expression to the
stroma of the developing mammary gland in the mouse embryo (Figure 1). To extend
this result further, we examined the activity of this DNA fragment in the mammary
glands of postnatal animals. To our surprise, this promoter fragment is silent in postnatal
mammary glands. 17beta-estradiol pellet implantations on to mammary fat pads also
failed to induce reporter gene expression in transgenic animals. These results suggested
that this 400bp fragment of the Msx2 promoter constitutes regulatory elements that
restrict its transcriptional activity in the mammary gland during early stages of mammary
gland development and it does not respond to stimulation by estrogen. Since this DNA
fragment is active only in stroma cells of the embryonic mammary gland, transfection
assay to examine its transcriptional activity in epithelium-derived MCF7 cell line yielded
negative results. Nevertheless, this 400bp DNA regulatory sequence in the Msx2
promoter is the first promoter studied that targets gene expression to the mammary
stroma of the embryonic mammary analgen. More studies are needed to identify
regulatory factors that control its activity during initial stages of mammary gland
development.

We have examined mammary gland phenotypes in both the Msx2 transgenic
animals and the Msx2 null animals. The Msx2 transgene was under the control of a 5.2kb
Msx2 promoter (Liu ef al., 1994, Liu et al., 1999). In the transgenic animals, more lateral
branches were observed (Figure 2B) although the gland did not extend as far as that of
the nontrangenic mammary gland (Figure 2A). In contrast, the development of mammary
glands in Msx2 null mutant animals were either retarded or inhibited (Figure 2C and 2D).
Mammary ducts were dilated with large terminal end buds (TEBs) (Figure 2C). These
results suggest that Msx2 gene expression is required for mammary gland development.
Too much Msx2 expression however promotes lateral branching of the mammary gland at




the expense of ductal extension. Based on the phenotype of the Msx2 transgenic animal,
we hypothesize that the Msx2 gene participates in the development of the mammary
gland by exerting its regulatory function in (i) the initial phase of mammary bud
induction and in (ii) determining branching points.

Interestingly, several other genes have been shown to participate in the regulatory
decisions of side-branching. Among these are progesterone and progesterone receptor,
prolactin and prolactin receptor, C/EBPP (Lydon et al., 1995; Shyamala et al., 1998;
Atwood e al., 2000; Ormandy ef al., 1997, Robinson ef al., 1998; Seagroves et al., 1998,
Robison et al., 2000). It will be important to examine genetic interactions among
molecules in order to decipher the regulatory hiearchies that dictate normal mammary
gland development.

Our plan of action in the remaining funding period is to perform an extensive
analysis of the Msx2 overexpression transgenic and rescued phenotypes.




Figure 1: A 400bp 5° up-steam DNA fragment in the Msx2 promoter targets the lacZ
reporter expression in the mesenchyme surrounding the mammary epithelial bud. (A) In
an E12 embryo, the expression of the lacZ reporter in the mammary gland anlagens was
significantly reduced in the Msx2 null background (arrows). (B) The expression of the
lacZ reporter in the mammary anlagen was intense in a littermate control. (C) InanE14
embryo, lacZ expression level appeared to be higher.

Figure 2: Whole-mount analysis of mammary tissue from 8 week-old virgin animals.
(A) Mammary tissue from a wildtype virgin showed extensive ductal elongation. Some
side branching was observed. (B) Mammary tissue from a Msx2 transgenic animal
displayed elaborate amount of side branches. Ductal elongation was retarded in
comparison to the wildtype control in A. (C) and (D) Mammary tissues from two
different Msx2 null mutants showed that both ductal elongation and branching were
severely inhibited.




Key Research Accomplishments

1.

Msx2 gene activity is required for induction and branching of mouse mammary
gland.

Overexpression of Msx2 gene in the mammary tissue induces more side-
branching.

The 400bp Msx2 regulatory sequences do not respond to estrogen induction in
vivo.

Msx2 gene expression in Estrogen Receptor o (ERar) null mutant mammary tissue
was not significantly affected (<2 fold), indicating that the Msx2 gene is not
required for ERa function.




Reportable Outcomes

Not at this time.
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Conclusion

Based on phenotypes of the Msx2 null and transgenic animals, we can conclude that the
Msx2 gene is essential for normal mouse mammary gland development. Msx2 gene
activity is required for induction and branching of mouse mammary gland. Over-
expression of the Msx2 gene in the mammary tissue induces more side-branching,
suggesting that Msx2 gene may be required for determining the branching points on the
TEB. Our study of the 400bp Msx2 regulatory sequences fail to show induction by
estrogen and Msx2 gene expression in Estrogen Receptor o (ERer) null mutant mammary
tissue was not significantly affected (<2 fold), indicating that the Msx2 gene is not

required for ERa function.
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